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I 
I 
I Computation of high- resolution wavenumber spectra includes 

as an intermediate step,  the solution of a set of Hermitian equations.    This ' 

•J set of equat   ns has the form of a least-squares multichannel frequency- 

domain filter design equation which can be expressed in vector-matrix 
If notation as 

SECTION I 

INTRODUCTION AND SUMMARY 

Ha=^ (1-1) 

where 

H   =   n x n nonsingular Hermitian power spectral matrix 

b    =   "x Iknown complex columnvectorof output power spectra 

a    =   "x^nknowncomplexcolumnvectoroffilterweights 

This report investigates three techniques of solving for the unknown vector 

a: the method of conjugate gradients,  steepest-descent method,  and exact- 

inverse method.    The object is to determine the accuracy and computational 
complexity of each technique. 

Previously,   problems of this type were solved using a direct 

numerical matrix technique such as the Gaussian elimination method* or the 
square-root method. 

Fox,   L      1965: An Introduction to Numerical Linear Algebra 
Oxford Umversity Press,   N-v York,  p.  205-213. 

"Faddeeva    V.N. .   1959: Computational Methods of Linear Algebra 
Dover Publications,  Inc. ,  New York. ^geora, 

I- ! «cience services division 



To obtain a solution,  the Gaussian elimination method requires 

only that the matrix be nonsingular,  while the square-roots method requires 

the matrix to be nonsingular and Hermitian.    It was apparent that neither a 

knowledge of the form of the H matrix nor an estimate of the solution vector ä 

would significantly simplify the computation involved with either of these tech- 

niques.    Since both the general form of the H matrix and an estimate of the 

solution vector were available,  an investigation of two iterative techniques 

(steepest-descent and conjugate-gradients) which appeared to benefit compu- 

tationally from this knowledge was initiated.    Found during this investigation 

was a theorem from linear algebra which analytically expresses the inverse 

of the particular H matrix used to generate high-resolution f-k filter sets. 

Application of this analytical inverse greatly reduced the computation needed 

to generate high-resolution f-k filter sets. 

The high-resolution wavenumber filter sets are designed 

using a power spectral matrix H of the form 

! H   =  [41 +xx*] (1_2) 

where 

I    = n x n identity matrix 

x   = n x 1 column vector of the channel transforms 

—* 
x    = n x 1 row vector of the conjugate channel transforms 

Using the exact inverse equation,  the filter vector a can be computed easily as 

1 a = T b   - 

(«♦ tu) 
(1-3) 
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I 

"M-r^------—:'■■'■-'■■-— ■':-~%f:'-~-j" 

This computation requires much fewer calculations than a single cycle of the 

Iterative techniques studied and is orders of magnitude simpler than the 

Gaussian elimination technique. 

Further application of the exact inverse equation arises when 

a power spectral matrix is generated using an exponentially weighted 

of transform vectors: 
series 

N 
H = z N-j - -* 

a       x. x. 
J   J 0<a <: 1 (1-4) 

The invert of H can be generated iteratively by writing 

H.   ,    =   aH. +x.xl x*, 
J+1 J        J+l    j+1 (1-5) 

The exact inverse equation is 

H 
j+1 

_1_ 
a H. l 

-#      -i _ 
a-I- x... H.    x.   . 

J+1    J      j+1 

-1 -      -*       -i 
H.     x       x       H. 

J       J+1    J+1    j 
(1-6) 

This formulation for the inverse of a power spectral matrix is especially 

useful when the transform vectors x. are available sequentially as they would 

be in a practical situation.    The inverse of the power spectral matrix can be 

updated as each transform vector becomes available; and from thisinverse 

matrix,  many frequency-domain   filter sets can be designed at each iteration 

The ability to track a spectral matrix adaptively facilitates the coherent fre- 

quency-domain processing of small arrays with nonstationary noise fields 

1-3/4 science services division 
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SECTION II 

MULTICHANNEL FREQUENCY FILTER DESIGN 

This j.eport investigates three iterative techniques which offer 

computational savings in the design of multichannel frequency-domain filter 

sets.    This study was initiated to reduce the computational complexity involved 

in generating high-resolution f-k spect.-a, thereby enhancing the technique's 

capability of a real-time detection and location.    The following discussion 

briefly considers the general multichannel frequency-domain design problem 

then proceeds to the special problem of high-resolution f-k filter design. 

The general •■nullichannel filter-design equation can be written 

in vector-matrix notation as 

x1   x1 

* 
X        X. 

n      1 

X,      X 
1      n 

* 
X        X 

n     n 

al 

a 
n 

r 

* 

« 
x    S 

n 

=  b 
(2-1) 

where x. x.   is the estimated crosspower (for i ^ j) or the estimated autopower 
1    J th th ♦ 

(for i = j) between the i     and the j      channels and where x. S is the cross- 

power estimate between the desired signal output and the j     data channel. 

These autopower and crosspower spectra usually are estimated from a sample 

of multichannel data using one of two general approaches. 

II-1 science services division 

• 



One method is generating the autocorrelations and crosscor- 

relations from the time-domain data segment and transforming these cor- 

relations to obtain the desired power spectra.    The other method involves 

transforming segments of the data sample and stacking and/or smoothing these 

tranf forms to obtain the desired power spectra.      The second method is perti- 

nent to this report as it is computationally more efficient than the first method. 

The transform operation itself is not discussed,  but the data 

vector 

X^ = 

U 

nt 

(2-2) 

is assumed to be the colateral discrete transforms of all the data channels of 

the t     data segment at a particular frequency.    The power spectral matrix 

at this frequency then can be estimated as the weighted sum of a priori signal 
 * 

power spectral information S and the transform crossproducts x x     so that 

Xl   Xl 
x,   x 

1     n 

* * 
X x. X X 

n 1 n n 

m 
•^ -    - * =   H   =   iS   +2_,    oc^x^x^ (2-3) 

II-2 science ••rvices division 
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Using this estimate for the power spectral matrix,  the filter design equation 

can be written as 

Us + S ^x.t, x.t*  a = b (2-4) L t= 1 -J 

Most iterative solution techniques compute a residual vector 

r1 from an initial guess v    of the solution vector a: 

71   =   *  -Hv0 (2-5) 

In general,  the computation of this residual vector requires n    complex 

multiply and add operations,   not including the computations needed to form 

the matrix H-    In the special case,  using Equation 2-3 to form the matrix H, 

the residual vector can be computed directly without explicitly forming the 

H matrix.    This is done by substituting Equation 2-3 into Equation 2-5 and 

using a different order of computation,   as shown in the following equation. 

r     = US +£   a^   x*j v0   -  b (2.6) 

m 
— * 

1=1 
^ s vo + ^    a f >';   '• K     v 

2 
To form the H matrix using Equation 2-3,   mn    complex multi- 

ply and add operations are required.    Equation  2-6    can compute the residual 
2 

using n    +  3mn complex multiply and add operations by first forming the 
— *  — 

vector dot product   x      v0 ,    then performing the scalar multiplication,   and 
2 

summing over the resulting vectors.    This compares to (m + l)n    complex 

multiply and add operations needed to form H separately and then compute r. 

II-3 science services division 



Further    3mputational savings can be obtained if the signal- 
2 

model matrix S,  which contributes the n   term,   can be expressed as a diago- 

nal matrix (uncorrelated noise) 

S   = 

s1        0 .      0 

n 

(2-7) 

or the sum of vector products (several plane waves) 

s = E c
k \ 

zk 
k=l 

(2-8) 

For diagonal matrix S,  (3m + l)n complex multiply and add operations are 

required to compute r.    If S were defined by Equation   2-8,    3 (m + p) n 

multiply and add operations would be needed.    Since using the Gaussian 

elimination method to solve Equation 2-1  requires at least 2n     operations, 

significant savings in computation will result from using iterative solution 

techniques,  provided only a few iterations are required. 

The special problem of designing high-resolution f-k filter 

sets uses a simple form of the power spectral matrix where 

H =   [4 1 +xx*] 

II-4 

(2-9) 
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This form results from the transient nature of the detected signals,   but 

these likely will not be present in several different transform segments 

of the data sample.    The signal model is assumed to be equalized and 

uncorrelated from channel to  channel; therefore.   S = i (the identity matrix), 

and 

" 1 

0 

b   = (2-10) 

A theorem from linear algebra, which will be called the 

exact inverse equation (Appendix B),   reduces the computation of high- 

resoluticn f-k filter sets to approximately 3n complex multiply and add 

operations (where n is the number of channels).    The exact inverse 

equation can be expressed generally as 

where 

LA   +   u v * I 
■1 

=    A 
-1--«    .1 

A      u v    A 
_ *    .i ~ 

1 + v   A      u 
(2-11) 

A   = n x n nonsingular complex matrix 

u    = n x 1 column vector 

v    = n x 1 column vector 
— * 
v    = conjugate transpose of v 

[A + u v J is nonsingular 

II-5 science services division 



Applying this theorem to the high-resolution £-k filter 

design yields 

Pointing out the simplicity of the calculations,  this vector-matrix equation 

can be rewritten as 

i r   x 
a, 

s   L 4 + x    x   J 

J «   L4 + x*x J 
j = 2)3 ,n (2-13) 

_* _ 
The vector product x    x is real and needs to be computed 

only once for each transform segment.    Remaining calculations can be 

accomplished with the equivalent of 2n more complex multiply and adds 

(CMPA's).    The required computations are discussed in Section V.    The 

total computation necessary for the exact inverse method is roughly 3n 

complex multiply and add operations compared with approximately 12n CMPA's 

for one iteration of the steepest-descent method and 24n CMPA's for one 

iteration of the finite procedure.    Thus,  the exact inverse technique is the 

most straightforward and efficient procedure to design high-resolution 
—• 

f-k filter sets.    It is possible to manipulate the exact inverse equation to 

update the inverse of a power spectral matrix; this area is covered in the 

section on adaptive update methods. 

II_6 science services division 
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SECTION III 

SUMMARY OF GRADIENT METHODS 

Based on the gradient of a particular quadratic form,  two 

iterative design procedures - steepest-descent and conjugate-gradient 

methods - were investigated during this study.    While these two approaches 

are not the most efficient means of obtaining high-resolution f-k filter sets, 

they are applicable to the more general filter-design problems.    The details 

of these methods are dtscribed in Appendix A. 

A. STEEPEST-DESCENT METHOD 

The numerical algorithm generated using the steepest- 

descent approach is 

Vk+1   =   Vk + Pk 
r
k 

(3-1) 

=   b  -  H 

P,.   = 

— * — 
rk  rk 

_*     _ 
ri,H ru k        k 

A simpler procedure results when the form of the H mat 

(3-2) 

(3-3) 

nx 
is 

m 

H   =   «I   +2 
-1=1 

wi xi 4 (3-4) 

The matrix operations become vector operations,  and the algorithm ij 

Vk+1   =   Vk + Pkrk (3-1) 

=   b  "   4vk  -£    u^xjx*  v   ) 

la 1 
(3-5) 

- 

III-l science services divisicn 
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—— 

—   *  — 
r r 
k k 

€rkrk   +  £l   "ill    *l 

Ztk     "    "I    'k <3-7> 

While the notation of Equations  3-5,  3-6,  and 3-7 is more 

complicated than that of Equations  3-2 and 3-3,  the amount of computation. 

needed has been reduced.    The reduction in computation is obtained by per- 
_* _ _* _ 

forming the vector-dot-product operations x.  v    and x.   r    first,  leaving 

only scalar operations to be performed.    An analysis of the amount of com- 

putation required is presented in a later section of this report. 

B.    FINITE PROCEDURE (CONJUGATE-GRADIENT METHOD) 

The computation cycle evolving this procedure is 

\+l   "   \ + Pk^k (3-1) 

rk   =   b-Hvk (3.2) 

-* - 
rk   rk 

Pk   = -*   - (3-3) 
rkHrk 

_# _ 
rk  rk 

Ik.!   = -*    _ (3-8) 
rk-lrk-l 

Wk   =   rk +    ^k-l  Wk-1 (3-9) 

The first cycle is computed using w    = r   . 

Ill- 2 sclsne« ••rvic*s division 



—* — 
u     =   r     r 

k k     k 

3 

Again,  consider the special case where 

m H = ^+ Z \\\ (3"4) 
1=1 

The computational cycle becomes 

^k+i = ^k + pk ^k c3-1) 

m /    *        \ 
rk   =   b   -   ^ Vk   "  E   \ ^ (^   Vk) <3-5) 

-L=l 

(3-10) 

^ B xr rk <3-7) 

pk = uk/(^k +E ^ztk ztk) <3-11) 

qk-i = Vvi <3-12) 

wk = rk + Vi wk-i <3-9) 

For the first iteration, wft = r.  and q,    ,   is not computed. 
0        ü k-1 

Notation again becomes more cumbersome,  but the computation 

needed is much less than that required to form the autopower-crosspower 

matrix and then solve for the desired filter set.    Computational savings are 

obtained by carrying out the same computations in a different order.    A 

detailed analysis of the numerical operations involved is presented in a later 

section of this report. 

Ill-3/4 science services division 



SECTION IV 

ADAPTIVE UPDATE METHODS 

In many practical applications,  all individual vectors x. 

which make up the estimated covariance matrix H are not simultaneously- 

available.    The various samples must be stored before they can be used 

in the filter design.    One method stores all the needed vectors in a com- 

puter memory and uses one previously mentioned algorithm to compute 

a new filter set each time a new vector is received.    Another method 

iteratively updates either the filter set or the covariance-matrix inverse 

each time a new vector is received.    Iterative updating reduces the storage 

and computation required but is restricted to using a class of memory 

functions.    This class includes the exponential-weighting function which is 

discussed in this section. 

Two of the techniques previously discussed can be formulated 

as iterative-updating techniques which weight previous transform vectors 

with an exponentially decreasing function.    Exponential weighting can be 

obtained by computing a weighted sum of the previous covariance estimate 

and the current transform-vector product; i. e. , 

H     = fa H     , + x   x 0 ^ a ^ 1 (4-1) 
n        L       n-!        n    n J 

The   n + 1    estimate will be 

_        _* 
H     .    =    a H    + x        x (4-2) 

n+1 n        n+1    n+1 

[-   -*"|     —        —* 
aH     ,+xx       + x   , , x   , . 

n-1        n    nj        n+1    n+1 

2 _   _*      _        _. ^ 
=    a   H     ,+ax   x    + x  ,, x  ,, 

n-i n   n n+1    n+1 

IV-1 science services division 
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etc.    Thus,  a vector n samples in the past is weighted by a".    If 0 < a < 1, 

the current estimate of the autopower-crosspower matrix weights the 

current transform vector with weights equal to unity and previous transform 

vectors with weights of less than unity.    These weights (Equation 4-2) become 

exponentially smaller for the more distant samples.    The past transform 

vectors can be weighted in the desired fashion by the choice of a,  where 

a = exp(-ß) for 0 > 0. 

A.    EXACT  INVERSE MATRIX UPDATE METHOD 

One updating method applies the exact inverse equation directly 

to Equation 4-1,    The inverse of the updated covariance matrix is then 

H-1   =    i 
n a 

-1   - -* 
. H     , x    x   H     , 

H" n-1    n    n    n-1 
n-1    " -*    -1    - a + x   H    , x 

n    n-1    n 

(4-3) 

The desired filter weights can be obtained from the matrix multiplication 

1   =   Hn    b (4-4) 

In this case,  the previously computed covariance matrix is considered to 

be the noise model.    This method requires computing and storage of an 

entire matrix at each iteration as well as a matrix-vector multiplication for 

each filter set needed.    When only a few filter sets are needed, the steepest- 

descent technique is computationally more efficient. 

B.    STEEPEST-DESCENT METHOD 

A particularly simple scheme is afforded by extending the 

steepest-descent method.    The new filter set is formed from the previous 

filter set by computing 

IV-2 science services division 



f    . ,    =   f     + p     ,  r 
n+1 n     ^n+1    n+1 

(4-5) 

where the residual vector r     . is 
n+1 

n+1 n+1    n 
(4-6) 

The matrix 

H 
n+1 

a H   + x  ,. x j. 
n       n+1    n+1 

(4-7) 

This allows the residual vector to be expressed as 

n+ =     b   -   fa H    + x il x* ,I     f 
1 Ln        n+ln+U        n 

(4-8) 

=    (1 - a) b + a I b - H   f       - x  . , x* , f 
L nnJ n+ln+ln 

The quantity   b  -  H    f      is the residual vector r    from the previous 
n    n n ^ 

iteration.    The new residual vector is then 

rr,4.i   =   (1-a)b + ar    - x  , , x Al   f n+1 n       n+1    n+1      n 
(4-9) 

This new residual vector,  used to calculate the new filter weights,  is 

stored to be used in the next residual calculation. 

IV-3 science services division 
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The problem of computing the iteration factor p        is en- 
n+1 

countered now.    Since the matrix H exists implicitly at each iteration but 

is not directly available for computation,   the iteration factor cannot be 

computed directly from 

r  „   r 
nH     n+1 

n+1 -* 
r H r 
n+1     n+1    n+1 

An alternative to computing the iteration factor for each cycle is to choose 

a single value and use it throughout the process.    This single value must be 

small enough to guarantee the numerical stability of the process.    This 

requirement will be satisfied if 

0 < p <: 

max 

where X^^ is the largest eigenvalue of the matrix H  .    Since the matrix 

Hn is   changing continually as new data samples are added,  only the upper 

bound on the maximum eigenvalue can be expressed.    A matrix of the form 

of Equation4-l is essentially a weighted sum of vector products 

— * 
H     =   V   aJ x    . x 

n £^> n-j     n-j 
j=0 

for 0 < a < 1 

The largest eigenvalue X of H    is then 
max n 

X ^ 
max \K   '    1 L   max    maxJ 

IV-4 science services division 
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where x^^ is the largest data vector encountered.    This implies that the 

choice of p should be in the range 

0 < p s' l 

—*       — 
x x 
max    max' 

Such a conservative choice of the iteration factor sacrifices 

rapid convergence for numerical stability.    This approach requires a priori 

knowledge of the maximum magnitude of the transform vector.    In a practical 

situation,  overestimating the value of x x would be necessarv to 
max    max 7 

maintain p within the desired bounds. 

Another approach to determining pis to computex   x at each cycle 
 #  

and compare itwith the largest previous value of x   x.   Thenp can be chosen within 

the bounds determined by the previous data used in the process.   This approach 

might permit the use of an iteration factor which is initially much larger than can 

be used when the factor is fixed throughout the proces s. 

C.    COMMENTS 

Neither of the preceding adaptive techniques have been applied 

to either real or synthetic data.     A simplification  of the steepest-descent 

algorithm,   similar to the technicae investigated by Bernard Widrow,     has 

been investigated using time-domain data.    That investigation is described 

in Advanced Array Research Special Report No.   1. 

« 
Widrow,  Bernard,   1966,  Adaptive Filters  1: Fundamentals: Stanford 
University Tech.  Rpt.  No.  6764-6,  Contracts DA-01-021 AMC-90015 (Y) 
and NOBsr-95038,  Dec. 

** 
Texas Instruments Incorporated,   1967: Adaptive Filtering of Seismic 
Array Data, Advanced Array Research Spec.   Rpt.  No.   1,  Contract 
F33657-67-C-0708-P001,   18 Sept. 
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SECTION V 

REQUIRED COMPUTATIONS 

A major consideration in choosing a numerical method to 

solve a particular problem is the number of computations required by each 

method.    This section presents a summary of the computations required by 

each method discussed in this report.    For comparison,  the method of 

Gaussian elimination is also included.    An example is given at the conclusion 

of the discussion to illustrate the numerical efficiency of each method. 

Each method is evaluated on the basis of solving the following 

equation for the elements a   of the vector a 
i 

<i 

0 

1 

0 

0 

0 

0 

N 

[x* . . . x*] 

f 

n 

1 

0 

(5-1) 

N 
A.    GAUSSIAN ELIMINATION METHOD 

By performing elementary row operations on the H matrix 

and the b vector.  Equation 5-1 is changed to an equation of the £03 )rm 

f 1       A1Z    A13     • 

0       1 
23 

In 

2n 

'n-l.nj        an 

(5-2) 

K 
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The value of a    is then d  .    The remaining elements of a are found by 

successively solving for a     ,,  a     _,...,  a..    To use this method,  the 
n-i      n-£ 1 

covariance matrix H must be computed directly.   This requires 2n multi- 
2 

plies and 2n adds to calculate diagonal elements and 2n  - 2n multiplies and 
2 

n    - n adds to calculate the off-diagonal elements. 

Then the matrix is reduced to the triangular form of 
3 2 3 2 Equation 5-2 which requires 2n    - 2n    multiplies,   2n    - 2n    adds,  and 

2 
2n    divides.    Solving for the filter weights using the triangular form 

2 2 
(Equation 5-2) requires an additional 2n    - 2n multiplies and 2n    - 2n adds. 

For all the computations,  the Gaussian elimination method, 

including the covariance matrix formation,  requires 

3 2 
• 2n    + 2n    - 2n multiplies 

^3        2 
• 2n    + n    - n adds 

2 
• 2n    divides 

B.    STEEPEST-DESCENT METHOD 

Calculating the residual vector requires lOn multiplies and 

8n + 1 adds.    To form the new filter weights,  2n multiplies and 2n adds 

are required.    If the algorithm is cycled for ITER iterations,    calculations 

using the steepest-descent method require 

• 12n (ITER)   multiplies 

• (lOn + 1) (ITER)   adds 

V-2 «cl« 



C. FINITE PROCEDURE 

Assuming the imaginary part of p    is 0,   each iteration of 

the finite procedure uses lOn multiplies and   8n + 1   adds to compute the 

residual vector.    Computing the iteration constant requires    lOn + 3   multi- 

plies and   8n + 2   adds for the first iteration and   12n + 3   multiplies, 

lOn + 2  adds,  and   1 divide for each succeeding iteration.    To calculate 

the new filter weights,  2n multiplies and 2n adds at each iteration are 

required.    If there are ITER iterations,  the total computation requires 

• (24n + 3) (ITER) - 2n multiplies 

• (20n + 3) (ITER) - 2n adds 

• ITER   divides 

D. EXACT INVERSE METHOD FOR SINGLE-CHANNEL PREDICTION 

Computing the filter weights by this method requires 

• 3 n multiplies 

• n + 1   adds 

• 1 divide 

E.    COMPARISON 

As an example,   consider the design of a high-resolution f-k 

spectra filter set where a first approximation of the filter weights is avail- 

able.    Using 20 channels of data,  the required amount of computation for 

each method is as follows: 

• Gaussian  Elimination   — 16,760 multiplies, 
16,380 adds,  and 800 divides 

• Steepest Descent (2 iterations) — 480 multiplies 
and 402 adds 
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• Finite (1 iteration) — 443 multiplies, 
363 adds,  and 1 divide 

• Exact Inverse — 40 multiplies, 21 adds, 
and 1 divide 

In this example, the exact inverse procedure is clearly the 

most efficient computationally.    This efficiency is due to the particular 

formulation of the equations being solved,  and the solution of a more 

general filter-design problem mi^ht show one of the other techniques to 

be more effective.    The selection of a technique depends on the problem 

formulation and on the knowledge of the form of the solution. 
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SECTION VI 

CONCLUSIONS 

Analysis of the methods available for the numerical solutior 

of the frequency-domain multichannel filter-design problem yields two 

major conclusions: 

• The exact inverse equation is by far the 
most satisfactory method for designing 
high-re solution filter sets from single 
transform data (a rank-one matrix of 
data). 

• The exact inverse equation can be used 
to update the inverse of a spectral matrix 
for adaptively tracking nonstationary 
noise fields.    Such information would be 
required to do Baysian location in a cor- 
related noise field (for example,  at the 
subarray level). 
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APPENDIX A 

GRADIENT METHODS 

A method of iteratively solving the equation H a = b   for an 

unknown a  can be generated by minimizing the quadratic form 

— *T     —     —* T —      —* T — 
Q   =   v       Hv - b        v  -   v        b (A-l) 

When H is positive-definite Hermitian,  the quadratic v        H v is non- 

negative,  and Q takes on its minimum value - b        Hb when v = H      b. 

Thus,  the vector v which minimizes Q is the solution vector ä.    The iter- 

ative procedure makes an improved estimate v    of the solution vector by 

starting with an initial estimate v    and successively computing a new estimate 

Vk+1   =   Vk + Pk Wk f0r Pk real (A-^ 

The amount Q changes from the k to the k + 1 iteration is 

AQ   =   Q 
k+ 

2 —*T       — /—*T —       —* T —\ 
1 "  Qk   =   Pk   W        H W " Pk^k     rk + rk       Wj        (A-3) 

where 

r.    =   b   -   Hv, 
k k 

Minimizing Q requires that AQ be negative after each iteration.    This con- 

strains p    to the range 

— *X — —* T  — 
Wk     rk   +   rk       Wk o < p   <  ~  L 

k 
— * T        — 
w, H w, 

k k 
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D 
The largest change in AQ is obtained when IJ 

I 
(A-4) 

1 
Pk  =    2 

— * T —       —* T — 
w        r,   +  r,       w, 

k        k k 

— * T       — 
w,        H w, 

k k 

— * T — 
rk        rk 

Pk   "   -*T      - (A-5) 

rk      Hrk 

At this point,  p   is the reciprocal of the Rayleigh quotient for. the residual 

vector.    The Rayleigh quotient has two useful properties: 

A-2 science services division 

I 
1 

An optimum p    then can be computed at each iteration.    Only the choice of 

w     remains to completely define the iterative process.    It is this choice of 

w    which distinguishes the various iterative methods available.    By choosing 

Wk t0 be the columns of t*16 identity matrix taken in cyclic order,  the method y 

becomes the Gauss-Seidel technique.    This technique will not be considered * 

in this report. _ 

3 
A.    STEEPEST-DESCENT METHOD 

If the process is desired to move in the direction of "steepest 

descent, " then AQ is minimized with respect to the elements of w  .    This 

results in choosing wk = rk = b " Hv
k-    Substituting this choice into the 

equation for p    yields 

B 
11 

] • For an arbitrary vector r,  the Rayleigh quotient 
alwa/s lies between the largest and the smallest „ 
eigenvalues of the matrix H 

• For a first-order approximation to an eigenvector lt 

of H, it yields a second-order approximation to the 
corresponding eigenvalue 

I 
I 
I 
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These propertie^imply that only one calculation of pk is necessary if the 

I initial choice of v0 is close to the desired solution H -1 b .    This results 

from the ability to express the residual vector 7k as a linear combination 

I of the normalized eigenvectors y    of H. 

n 

k    * Z^      aik  Vl Withy    y   = 1 (A_6) 

1=1 ' 

] 
3 

The matrix H can also be expressed as the sum of its 

I eigenvalues and eigenvectors: 

n 
H = E  x

l y^ y* for x.txto (A.7) 
HI/ — 1 J 

This simple assumption is not necessary to the conclusion, and the result 

is still valid when H is not of this form. 

Substituting Equations A-6 andA-7 into Equation A-5 yields 

Since orthogonal eigenvectors can be generated for a Hermitian matrix. 

Equation A-8 reduces to 

n 

P 

alk    alk 

k n (A-9) 

Z  ^k  ^kaik 
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It is apparent here that a first-order change in the a     's will not affect the 

value of pk.    If the residual vector is initially small,  then p   will be con- 

stant throughout the process. 

The numerical algorithm generated using the steepest- 

descent approach is 

k+1 k     rk    k (A-10) 

r,    =   b - H (A-ll) 

Pu   = 

— * _ 
rk rk 
-*      — 
rkHrk 

(A-12) 

is 

A simpler procedure results when the form of the H matrix 

m 
H ■ i^T.vX 

1= 1 
I   lAl (A-13) 

The matrix operations become vector operations,  and the algorithm is 

Vk+1   =   Vk + Pkrk (A-10) 

m 
rk = b-^vk-i; at^Kvk) 

-6= 1 

(A-14) 

— « _ 
k      k 

_* _ 
m 

^ rk rk+ E a 

^=i 
i7'izii 

(A-15) 
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fwTf'    :' ;      :''-■    I 

—« — 
z .,     =   x.    r 

^k   -   xl   rk (A-16) 

While the notation of Equations A-14, A-15,  and A-16 is more 

complicated than that of Equations A-11 and A-12.  the amount of computation 

needed has been reduced.  The reduction in computation is obtained by per- 

forming the vector-dot-product operations x* vk and x * 7k first,  leaving 

only scalar operations to be performed.    An analysis of the amount of com- 

putation required is presented in a later section of this report. 

B.    FINITE PROCEDURE 

By using the method of conjugate gradients,  it is possible to 

choose pk and wk so that the iteration process terminates in exactly n steps. 

This is accomplished by allowing wk to be a combination of the current re- 

sidual and the previous vector w        so that 
k-1 

Wk   =   rk + qk.lWk-l (A-17) 

The successive constants qk_ l are chosen to make the quadratic foi >rm 

WkHwk-l   =   0 (A-18) 

The constant pk is again chosen to minimize Q in Equation A-l so that 

— * _ 
rk  rk 

Pk   -     -*      - (A-12) 
rk H  rk 
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Substituting Equation A-17 into Equation A-18 and solving for the constant 

qk-i yields 

rkHWk-l 
Vl   =   " =« =  (A-19) 

Wk-lHwk-l 

The particular choices of p    and q        just given produce 

several important effects.    First, the vector product 

Wk   =   wk   rk+l  =   Wk(rkPkHwk) <A-20) 

— *      _ —# _ —*/— 
rk+l 

vanishes, which implies that rk+1 and w   are orthogonal.    Second,  the 

vector product 

i rk = (rk " Pk wk H)(wk " Vi wk.i) <A-21) 
—*     —        /—* —* 
rk+ 

-«_ -*    - 
=     r    w    -   p    w   H w 

k     k      rk    k k-1 

also vanishes as a result of EquationA-21 and the choice of p  .    This implies 
~ _ k r 

that rk+1 and rk are also orthogonal.    It can be shown by induction that 

"k+l  H\   =  7k+l ^ * 7k+l ~
Tl   =   0 <A-22) 

for -1 = 0, 1, . . .,k-l 

That is,  every new rk computed is orthogonal to all the previously computed 

residual vectors.    Similarly,   each rk is orthogonal to all the previously 

computed w^ vectors.    It follows that r    s o,   since the n orthogonal vectors 
r
0 through rn_ ^ span the n-space defined by the matrix H of rank n.    These 

facts allow simplifying the computation of q        to 
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The computational cycle evolving this procedure is 

rk b -  H v, 
k 

-* - 

pk 
= W 

-*      - 
rkHrk 

-* - 

V 1 
rk  rk 

-«     - 
rk-1 rk-1 

_ 
wk 

= rk +Viwk-i 

The first cycle is computed using w     =   r   . 

Again,  consider the special case where 

m 
H   =   ^ I   + S ai/ 

x» x 

■ 

— « — 
^  rk 

lk.l   =— =  (A-23) 

Vl   rk-l 

Vk+1   '    Vk   +   Pk Wk (A-10) 

(A-li) 

(A-12) 

(A-23) 

(A-17) 

l^l^l (A-13) 
1=1 
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The computational cycle becomes 

vvxi    =   vi+ P,, w k+1   -   vkT ^k wk (A-10) 

m 
rk =    b   "   ^k   -Z    ^liK^ (A-14) 

lm 1 

— * — 
Uk   =    rk   rk (A-24) 

Z^k   =   Xl rk 

m 

Fk ' - \/(t\ + i: «tv-J 
^=i 

Vi ■ Vvi 

Wk   =   rk   +   ^k-l  Wk-1 (A-17) 

For the first iteration. w0   =  r0 and q^^ is not computed. 

Notation again becomes more cumbersome, but the computation 

needed is much less than that required to form the autopower-crosspower 

matrix and then solve for the desired filter set.    Computational savings are 

obtained by carrying out the same computations in a different order. 
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APPENDIX B 

EXACT INVERSE EQUATION 

A.    SOLUTION BY THE EXACT INVERSE EQUATION 

The exact inverse equation is an analytic expression for the 

inverse of the matrix H in the equation 

Ö 

e 

H a   =   b 

The solution vector a can be written as 

a   =   H"1b 

(B-l) 

(B-2) 

when H is nonsingular.    This report studies numerical methods of solving 

Equation B-l   when, the H matrix is 

m 

H   =   4 S   + 22     0 . x. x. I    I   I (B-3) 
I = 1 

Consider a matrix of the form [A + x y *1.    When both A and 
r     —*■) L j 
jA + x y   Jare nonsingular,  the inverse of this matrix is 

where 

[A + xy*] =   A 
-1 

-1 --*     -1 
A      x y    A 

— *     -1 - 
1 +y     A      x 

A = n x n complex matrix 

x = n x 1 column vector 

-* i v = 1 x n row vector 

(B-4) 
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This equation is verified by the following multiplication: 

1 __«       i 
A      x y    A 

(l+7*A-1x) 
[A + xy*] (B-5) 

=    A^A+A'^y* -   A^xy^A^A 
1 __*       i „_* 

A      x y   A      x y 
-* -1   -N 

(l +y*A"1x) (l +y*A"1x) 

-1--* 
=     I + A      x y 

A-1--*     A"
1
 -f-*   A"

1
 -")  -* A      xy-A      xVyA      x^y 

(I+7*A-
1
;) 

=     1+     V1 + V     A      x;  A      xy-A      xy     -U    A      xj A     xy 

(i+rA^x) 

=    I 

When the matrix H has the form of Equation B-3, a recursive 

scheme can be used to generate the inverse of H directly from the transform 

points.    The exact inverse procedure finds I 
m -i-l 

4S+^     a 

1= 1 

—   -* 
€ Xl Xl =   H (B-6) 

I 

B-2 science services division 

I 
I 
J 



Equation B-6 is found by first computing 

and 

:il = ^s+aixixr] (B-7) 

1 a 
1 

t+aixlS'lxl 

-1 -  _«   _i 
S      x    x    S 

-1 
=   [Al " a2 X2 X2 ] 

A'1   =    A- 
a 

A"1  -     -*      -1 
-*   .-1~     I   Al    X2X2A1 

1+a2X
m

Al    x2 

m m-1 

a m-1 

1 + a x      A"        x 
m-i    m     m-1     m 

-1     _    _«     _i 
A       . x    x    A 

m-1    m   m    m-1 

m (B-8) 

Each iteration is completed by calculating the vectoj 

Cl   =    A^-l   Xl 

Then the vector d has the form 

(B-9) 

dl   =  ^ Cl (B-10) 
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The first iteration requires a knowledge of the matrix S      and 

the scalar 4 which are stored in the computer memory or calculated at the 

beginning of each cycle.    Then,  from Equation B-8, 

A"1   -   -i   S"1 Ai    "   4 s 

Each succeeding iteration is 

a 
1 

4" + 4a, x,  S     x 
-* 

•lxl 

.1 _   _*   .1 
S      x   x   S (B-H) 

-1 -1 
Al+l   =   Al 

a. 

1 + K *i 

—« 
c d ioT I = 1,2,.. . ,m-l        (B-12) 

Since the x  's are arbitrary complex vectors,  this algorithm could be used 

either to stack a series of autopower-crosspower matrices from successive 

time gates or to stack adjacent frequency points (smoothing) from the same 

time gate. 

B.    HIGH-RESOLUTION f-k FILTER SETS 

The; high-resolution technique uses an estimate of the auto- 

crosspower matrix of the form 

where 

H   =   41 + z   z 

I     = n x n identity matrix 

z    = n x 1 column vector 

_* _ 
z    = conjugate transpose of z 

4    = real constant 

m-13) 
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I 
The element of .„. vector I are .he normalised events of the data trane- 

m form vector x; i.e., 

| Zi   '   *i/(*i**)                       ^'i-l n               (B-14) 

p Using the exact inverse equation,  the inverse of the H matrix is 

0 H-1 = iL    Lill u H   i+?-A                  (B-15) 

U Multiplying b by H"1 yields a filter set 

0 
_     i      —* - 
a   =    1 _»z    b 

0 ?   («+^) <B"16, 

g Further simplification i. obtained when z ' I = N.    The fllter ... becomes 

r _ 

® a   =   ^2   ^   -(?)(T+7)    »«^ {B-17) 

fi 
Since the b vector has one nonzero element xn the jth value 

,- Equation B- 17 is computed more simply as 

a     -    -i./__l__\     * 
I" *  ~    tU + n)   zj   zi *  •   1.2,....n (B-18) 

The computational efficiency of this method over all the other 

matted, discussed is ohvious.    The filter sets designed by each technique 
were virtually identical. 
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APPENDIX C 

NUMERICAL, RESULTS 

A.    STEEPEST-DESCENT METHOD 

The numerical techniques discussed previously have been 

applied to the special problem of designing high-resolution f-k spectra 

filter sets.    In this special situation,  the techniques can be made more 

simple to achieve even greater numerical efficiency. 

The high-resolution technique uses an estimate of the auto- 

crosspower matrix of the form 

H   =   41 +  z z (C-l) 

where 

I   =   n x n identity matrix 

z  =   n x 1 column vector 
— * _ 
z  s   conjugate transpose of z 

4 =   real constant 

The elements of the vector z  are the normalised elements of the data trans- 

form vector x; i. e. , 

Zi   =   *i/(*i*i) fori = l,...1n (C-2) 

In this situation,  the residual vector r    is 
k 

rk =   b   -   [41 + z  z*] vk (C-3) 
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The iteration factor pk is not affected by a first-order change 

in the residual vector r^    Further observations about the iteration factor 

can be made as a result of the special form of the H matrix being considered. 

It is desired to compete the iteration factor 

-* — 
rk   rk 

Pk -*      - 
rkHr

k 

(C-4) 

The related eigenvalue problem is 

H^ = hyi for y *   yl   = 1 (C-5) 

t =   1, 2, . . . , n 

where 

X      =   eigenvalue of H 

y.   ■   the related eigenvector 

 * 
When H is  (^ I + x x   ),  it has only one eigenvalue \  , 

— * — 
X     =   4 + x    x n 

and all the n-1 other eigenvalues are 4« 

Suppose an initial vector v   is chosen so that 

r.   =  a y    + e 
l n 

(C-6) 

(C-7) 
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where yn is the eigenvector corresponding to the 

e  is a vector 
nonzero eigenvalue X    and 

n 
representing the difference between r    and a y  .    Then, 

1 n 

[a 7* +   ^]H[a7n+F] (C-8) 

& —*— r—* —     —* _T    _& _ 
a    yn yn  + aLy    e   + e     yj+ e     c 

a    yn  Hyn+a[yn He   +   €     H y^J +  c *   H 

By replacing^ yn with ^ yn in the denominator of Equation C-8 and 

s possible to write nizing that yn y   =   1 by definition,  it i 
recog- 

P,    = 

2 /—* — _*_ . —*_ 
a +a(y e+e y )+e e 
     v   n ' n / 

1 ,    r 2        /—* —     —* — KT       _* 
^nLa     +a(yn  e   + e      yJJ   +   e    H 

(C-9) 

If the difference vector e is small compared to the eigenvector 

yn,   then Equation C-9 can be approximated as 

Since 

then, 

'1 \ 
n 

n i + xv x 

V^x   ) 

C-3 

(C-10) 

(C-ll) 

science services division 

' 



When the H matrix has the form in Equation C-l, 

1 

i + z z      * 
(C-IZ) 

where n is the number of elements in the vector z.    The value of p    is observed 

in Figure C-l. 

The objective then   is to find an initial vector v    which will re- 

sult in a small e component in the first residual vector.    If this is found,  the 

iteration factor need not be computed at all but can be taken to be the value 

of Equation C-12. 

High-resolution f-k spectra are generated from a filter set a 

designed using an H matrix in the form of Equation C-l and 

b      =   [l.   0,  0 Oj (C-13) 

The unit entry in b is placed in the position corresponding to the desired 

reference sensor.    All other elements of the b vector are 0.    The equation 

set being solved is then 
r 

■ ■ 

0 0 zl 

1 0 

+ 
■ 

1 1 z 
n 

[•:•••<] al 
1 

0 

►■ • = 
• 

a 
n 

0 

(C-14) 

: 
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Figure C - 1.    Variation of p    from Iteration to Iteration when the 
 Residualls Small (Real Data; j = 0.001)  
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Experimental results show that v    = b is a good choice for 

the initial "guess" at a.    Using this value for v.,  Equation C-12 to solve 

Equation C-14,  and the steepest-descent method,  an accurate answer often 

was reached in one iteration; seldom were more than three iterations re- 
* 

quired.    Bodewig    has mentioned that 0.9 p. sometimes produces better 

convergence than p  .    On real data,   0. 9 p, is not so good a choice as p.. 

The convergence rates using different iteration factors can be observed in 

the Figure C-2 plots for each iteration of error vs iteration constants. 

When synthetic data were used, the 0.9 p. iteration factor converged faster 

than p1 (Figure C-3). 

If a good approximation to the filter weights is not available, 

very slow convergence can result.    This is demonstrated in Figure C-4 for 

synthetic data with an initial vector v. value of (1 + jl) for every entry 

where j = y/-l . 

There is an indication that solving the degenerate problem 

caused the rapid convergence experienced using a steepest-descent design 

procedure.      An initially good "guess" at the filter weights is not avail- 

able when the H matrix contains the sum of many vector products,  implying 

that, in general,   relatively slov convergence can be expected in the more 

complicated problems. 

B.    FINITE PROCEDURE 

Results also have been good using the finite procedure.    The 

chief advantage of this method — that it is not necessary to start from a 

first approximation to the filter weights as was necessary when using the 

steepest-descent method — is shown in Figure C-5. 

Bodewig,   E. ,   1956: Matrix Calculus,  Interscience Publishers,  Inc. , 
New York. 
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array; channel 1 is reference; £ = 0. 1) 
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Figure C-4.    Slow Convergence of Filter Weights When All Initial Filtei 
Weights Are 1 (Synthetic data; ^ = 0. 1) 
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Figure C-5. Approximate Convergence of Filter Weights When All Weights 
Are Initially Set Equal to 1.   [Finite procedure; synthetic data; 
4 = 0.1; (41 + xx*) 1 = "5] 
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Using real data,   convergence to essentially the exact solution 

was obtained in two iterations; every value of the initial filters was 1 (Fig- 

ure C-6).    Of course, when the real part of the reference channel was set 

to 1 and all other weights set equal to 0,  much better convergence occurred 

(Figure C-7).    In fact,  the filters were correct to four significant figures 

after the first iteration. 

Since the imaginary part of pk was very small during the 

first few iterations (Table C-l),  the program was rewritten to set the 

imaginary part to 0,   tnereby reducing the number of computations.    The 

convergence was completely unaffected. 

Finally,  pk = 0. 9 pi was used to measure the effect of varying 

pk.    Filter weights diverged rapidly (Figure C-8); the strong susceptibility 

to changes in p indicated that p necessarily must be recalculated at each 

iteration,   especially in view of the large and apparently unpredictable 

(without recalculating) variations in p    (Table C-l). 

Although the number of computations involved is almost 

twice that required by the steepest-descent method,  the finite procedure is 

better than any direct method other than the exact inverse equation.    The 

rapid convergence of this method is certainly the result of the degenerate 

problem being considered. 

C.    SPECTRA 

Wavenumber spectra obtained from the iteration schemes 

presented compare quite favorably with those obtained from current high- 

resolution techniques.    Spectra were obtained from real data (C3 subarray, 

minimum velocity 10. 0 km/sec.  f = 0. £5 Hz) using filter weights designed 

by the exact inverse equation and by the finite procedure.    In both cases. 
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Figure C-6.    Convergence of Filter Weights When All Weights are Initially 
Set Equal to 1   (Finite procedure; real data; 4 = 0.001) 
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Figure C-8.    Divergence of Filter Weights When p   Is Calculated as p 
(Synthetic data,  4 = 0. 1) * 
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Table C-l 

VARIATION OF p IN FINITE PROCEDURE (REAL DATA) 

Iteration p (real part) p (imaginary part) 

1 -0.0400 0. 

2 -0.0400 2.50x 10"10 

3 -0.0400 7.54x 10"6 

4 -0.0278 0.0346 
5 -0.0248 0.0104 

Note: Initially,  the real part of the reference channel is 1 and   all other 
channels are 0. 

Iteration p (real part) p (imaginary part) 

1 -0.0400 0. 

2 -999. -2.76 x 10r6 

3 -0.0399 -9.63 x 10"10 

4 -0.0417 -4.31 x 10"8 

5 -0.0244 -4.78 x 10"4 

6 -0.0109 -1.83 x 10'6 

Note: Initially,  both real and imaginary parts of all filter weights are  1. 
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.he Meer weigM ol cha„neI 8 has . Urge error „^^ ^ ^^ ^ 

Punched incor.ec.ly on .he data cacd. Howevec, .he äpac.ra ob.ained are 
vmuaUy idenUcal wi«. those obtained from current ^^     ^^ ^ | 

error in channel 8 did no. aignifican.Iy a„ec. .he spec.ra, „avenumber 

.P.c.,. are seen .o he rela.ively inaeneLive .o errors in .he individual B 

«.er weighis (unless .he error happens .o be in the reference channel). 

Fil.er „eighls designed fron, .he s.eepes.-descen. me^od 

c-16 «otono» urvlora division 

] 
were dually iden.ical .o .hose ob.ained iron, .be exac. inverse equa.ion; fl 

therefore, .he s.eepes.-descen. me.hod also will yield good spec.ra. U 

D.    SMOOTHING 

Fairly good resul.s were ob.ained when da.a were smoo.hed n 

over a range of frequencies.    The da.a used were derived from .he da.a " 

tor .he firs. eigh. channels of .he real da.a from .he 03 LASA subarray 

The .ransforn, for a given channel was al.ered .o give four new .ransforms ^ 

with an average equal to that of .he original .ransforn,.    The deviaMon of n 

any given componen. fron, .ha. of .he .ransforn, fron, which i. was derived ^ 

»as 1 .o Z percen..   U .bese devia.ions were .ruly random,  .be smocbed H 

flltar weigh.s would be expec.ed .o be equal .o .„ose for .be original da.a " 

Sine, .he devia.ions were no. en.irely random,  however,  .hey were aCually H 
somewhat different. 

Wi.b all iniiial fil.er weigh.s se. .o 0 excep. for .he real par. i] 

of .he reference channel which was se. .o 1,  .be s.eepes.-descen. me.bod 

showed a large ini.ial correc.ion followed by very slow convergence.    This [I 

me.hod,  .herefore,  seems to be somewha. ineffecive. 

The finiie procedure, on the other h^.d, produced convergence Ü 

to a nonvarying se. of fil.er weigh.s after .hree i.era.icrs and „as reasonably „ 

correct (.wo significant figures, after two.    These results occurred only when " 

the initial filter set „as a firs, approximation to the correct set of weights. „ 

 I 

: l 



I 
1 

When a bad first approximation was made (e   a      lefti™ «,    i 
I rnaae »e- g- .  letting the imaginary part 

ot the reference channel be s^t tn i\ i nnei be set to 1).  very slow convergence followed a 
large initial correction. 

««n«. „    ThUS' ^finite procedure produces 800d resul,8 -'"" »■* 
1.;   a re"0nable aPP'OXima"™ - *e «He. Weight6 ,. availabIe.    ne m:scenr,hod doe8 not "^good——• • -— 01 the filter weights is available. 

Thfc neCeSSity 0f a e00d £i™t approximation is further illus- 
trated when data from the 10-channel PPn « 
o{ fr , nel CPO array were smoothed over a range 
of frequencies; (only nine channels were used)      Th. H . 

,      . e u&ecl>-    The data sample consisted 

la°7 :"■oo Hz "'or i6 october i964'wi,h 4i Fouri" -—^— 
-n f = 0.,5to 1.05 Hz  - frequa„cy inc^en.. of 0. 00Z5 H..      AU .,„. 

form, were equa1Iy weighed.    Neither me.Hod could prod^e convergence 

when .he real par, of .he reference channel waa 1. 0 or 0. 1.    Tahle C  2 

Shows .he flUer „elgh.a ac.nally oh.ained nalng o.her „e.hods.    1. is readU, 

apparen. .ha. .he fni.ial choice, did not approxima.e .hese fil.er weigh.a 

and also .ha. no general way to make a good approximation 
. s     u "PProx'mation seems apparent. 

should be noted .ha. very poor resolu.ion was oh.ained wi.h the filter 
weights of Table C-2, lndlciUng that ^ ^ ^ ^ ^ 

Effective iterative methods for smoothing are thus limited 

t    cases in which .be transforms a. .he various fluencies under consider. 

.«on are approximately equal, allowing all initial «lt„ weights to be 

approximated as 0 (excent th« r-^f^ 

that the r  u "     annel Which is l)'   lt aPP— that the finite procedure is preferable fn ^      . 
w, P able t0 the steepest.descent method 
when computing spectra for smoothed crosspower matrices. 
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Table C-2 

FILTER WEIGHTS FOR DATA SMOOTHED OVER 41 FREQUENCIES 
FROM 0.95 TO 1.05   Hz 

Channel Filter Weights 

1 0.22481 x 10'10 
-0.71687 x 10" 

2 -0.41205 x 10"2 
0. 16657 x 10" 

3 0.29080 x 10"2 
0.5448 x 10"2 

4 -0.12049 x 10'2 
0.16102 x 10" 

5 -0. 10966 x lO-1 
-0.13375 x 10" 

6 -0.78141 x 10"3 
0.84145 x 10" 

7 0.14035 x 10"1 
0.40036 x 10" 

8 -0.96124 x 10'2 
-0.75366 x 10" 

9 0.22133 x 10"2 
-0.96892 x 10" 

1 
■] 
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